

The First New Millennium Deep Space Flight

David H. Lehman JANUARY 28, 1997

NASA

New Millennium Program

Overview System Elements

MISSION

- Thirteen advanced technologies validated via an asteroid flyby/comet flyby "test track" profile
- Asteroid McAuliffe and Comet West-Kohoutek-Ikemura
- Mars "flyby" recently added to mission plan

SPACECRAFT

• Two years required lifetime; four years goal

LAUNCH SERVICES

- Delta 7326
- Provided via NASA GSFC, Orbital Launch Services

GROUND SEGMENT

- Maximum use of JPL multi-mission infrastructure
- Consistent with highly autonomous spacecraft

SCIENCE

- Taken at appropriate times during the mission (cruise and encounters)
- Details to be defined by DS1 Science Team (1997)

Current Status

- Pre-project work started in mid 1995
- Selected Spectrum Astro as full industry partner in September 1995
- Mission go-ahead given by NASA HQ in September 1995
- Completed mission and system Interim Design Concurrence (IDC) Review in December 1995
- Launch vehicle selected in June 1996
- Project plan briefed to NASA HQ in July 1996 funding and support is solid
- Completed mission and system Detailed Design Concurrence (DDC) and Sage review, September 12, 1996
- Ground segment and S/C hardware detailed design reviews completed 12/96 Flight S/W autonomy reviews in process
- Working solar cell efficiency concerns
- Integration and test activities "ramping" up

DS1 Technology Partners

TECHNOLOGY DESCRIPTION	IPDT	TECHNOLOGY SUPPLIERS	FUNDING SOURCES
Ion Propulsion System	N/A	Hughes, Moog, LeRC, JPL	NASA, Moog, Hughes
SCARLET Solar Concentrator Array	MAMS	AEC-Able	BMDO, NASA
Small Deep Space Transponder	N/A	Motorola	NASA, Motorola
Ka-band Solid State Power Amplifier	Comm	Lockheed Martin (LM), JPL	Lockheed Martin, NASA
Autonomous Remote Agent Architecture	Auto	CMU, TRW, JPL, ARC	NASA
Autonomous Onboard Optical Navigation	Auto	JPL	NASA
Beacon Monitor Operations	Auto	JPL, Univ. of Colorado at Boulder	NASA
Miniature Imaging Camera Spectrometer	IT&A	SSG, Rockwell, Univ. of Arizona, JPL	NASA, SSG
Miniature Ion and Electron Spectrometer	ISIM	SwRI, LANL	NASA, SwRI
3D-Stack Processor	MicroE	SCC, LM, Boeing, TRW, JPL, AF/PL	NASA, AF/PL, industry
Low Power Electronics Experiment	MicroE	Georgia Tech., USC, MIT Lincoln Lab	NASA
Power Actuation and Switching Module	MicroE	LM, Boeing	NASA, Lockheed Martin
Multi-Functional Structures	MAMS	AF/PL, LM	AF/PL, LM

LEGEND					
IPDT = Integrated Product Development Team	ISIM = In-Situ Instruments & MEMS				
IT&A = Instrument Technologies & Architectures	MEMS = Micro-electro Mechanical Systems				
Auto = Autonomy	MAMS = Modular & Multifunctional Systems				
Comm = Communications systems	MicroE = Microelectronics Systems				

NASA

New Millennium Program

DS1 Technology Payload

- Solar electric propulsion
 - Provided by NSTAR (NASA SEP Technology Applications and Readiness) Program
 - 2.6 kW \Leftrightarrow I_{sp} = 3300 s; throttle in discrete steps to 0.6 kW \Leftrightarrow I_{sp} = 2200 s
 - Diagnostics package for E and B, energy and density of electrons and ions, and surface contamination
- Solar concentrator array (SCARLET)
 - Provided by BMDO
 - Arrays of cylindrical Fresnel lenses over strips of GaInP₂/GaAs/Ge
 - 2.6 kW at 1 AU BOL
- Miniature integrated camera and imaging spectrometer (MICAS)
 - 2 visible imaging channels
 - IR and UV imaging spectrometers
 - Shared 10-cm primary mirror
 - 7-kg package, no moving parts
- Miniature integrated ion and electron spectrometer (PEPE)
 - Energy and angle analysis for electrons and ions
 - Ion mass analysis
 - Microcalorimeter
 - 5-kg package, no moving parts

DS1 Technology Payload (Cont'd)

- On-board autonomy
 - Remont Agent (RA)
 - Planner/scheduler to generate a set of activities
 - Executive to expand that to a sequence of commands and to monitor their execution
 - Mode identification and reconfiguration
 - Optical navigation (AutoNav)
 - Image processing of asteroids against stellar background
 - Orbit determination
 - Maneuver design
 - Beacon monitor operations (BMOX)
 - Transmit 1 of 4 tones to indicate urgency of request for ground action. For example
 - > No tracking required
 - > Track within 2 weeks
 - > Track within 1 week
 - > Track as soon as possible
 - Small deep-space transponder (SDST)
 - X-band receiver, X-band and K_a-band exciters, CDU, TMU, and beacon tone generation
 - K_a-band solid state power amplifier (KAPA)
 - 2.5 3 W RF, 12.5% 15% efficiency

IPDT Forum 1/28/97 - 7

DS1 Technology Payload (Cont'd)

- Flight computer using 3-D stacking technologies (TDE)
 - 33 MHz RAD6000-5L
 - 320 MB DRAM in stacked cubes
 - 128 MB nonvolatile memory module
 - Interface, including dual rate 1773 fiber optic communications
- Power actuation and switching module (PASM)
 - Power switch using high-density interconnects with mixed signal ASIC controller
- Low power electronics (LPE)
 - 1 V logic, 0.18 μm feature size
- Multifunctional structure (MFS)
 - Electronics and thermal management combined in one load-bearing structural element

NASA

New Millennium Program

DS1 Technology Rationale

Technology	Inner solar system	Outer solar system	Astro- physics	Space physics	Earth science	Why validate in space?	Level of advancement over SOA	Comparison to other new technologies
Solar electric propulsion	+	+	\	\		End-to-end system test & validation	$10 \times I_{sp}$ of chemical propulsion	Significantly higher I _{sp} & thrust than SEP systems for station-keeping on comm. satellites
Solar concentrator array	3	*	3	3	3	End-to-end system test & validation	$2 \times$ reduction in cost; $1.5 \times$ reduction in area	Higher power and higher efficiency than array destroyed with METEOR (on Conestoga launch vehicle)
Autonomous navigation	+	+	د			End-to-end system test & validation	Eliminates need for ground navigation tracking	No comparable technology
3-D stack computer	3	3	٤	3	3	End-to-end system test & validation	3 × reduction in mass and volume; use of commercial standards (PCI interface)	More capable computer than on SSTI (Lewis), which has only 1 multichip module slice. (DS1 will have 4.)
Integrated camera and spectrometer	+	+			5	Validation of return of science-quality data	10 × reduction in cost, mass, and power	No comparable technology
Small deep- space transponder	+	+	3			Tests new DSN capability; need long range communications	2 × reduction in mass; 3 × reduction in cost; increased functionality	No new technology in this area in 10 years

+ = Enabling technology for many missions

= Enhancing technology for many missions or enabling for some

DS1 Technology Rationale (Cont'd)

Technology	Inner solar system	Outer solar system	Astro- physics	Space physics	Earth science	Why validate in space?	Level of advancement over SOA	Comparison to other new technologies
Remote agent architecture	+	+	+	✓	✓	End-to-end system test & validation	2.5 × reduction in ops cost; 2 × reduction in mission- specific S/W development	No comparable technology
Integrated ion and electron spectrometer	5	3		3		Tests effects of IPS and provides validation of science-quality data	$5 \times$ reduction in mass; $3 \times$ reduction in power	Comparable performance, lower mass and power than on Cassini; no moving parts.
Beacon monitor operations	5	5				End-to-end system test & validation	Eliminates need for routine tracking by large antennas of DSN	No comparable technology
Ka-band solid state power amplifier	5	3				Tests new DSN capability; need long range communications	1.5 × greater dc-to-rf efficiency; 5 × greater data rate than X-band	Higher power, higher efficiency SSPA than on MGS
Low power electronics	د	5	د	5	3	End-to-end system test & validation	$50 \times \text{reduction in power}$	Significantly lower power than on Mars Pathfinder
Multi- functional structure	د	5	خ	5	5	End-to-end system test & validation	3 × reduction in mass of cabling and electronic packaging	No comparable technology
Power actuation & switching module	3	3	3	3	3	End-to-end system test & validation	$20 \times$ reduction in mass and volume; $10 \times$ reduction in power	No comparable technology

IPDT Forum 1/28/97 - 12

DS1 McAuliffe/Mars/West-Kohoutek-Ikemura Flyby

Launch Vehicle Delta 7326-9.5

- Injection capability to escape 600 kg (for declination of launch asymptote < 28.7°).
 After allocation for secondaries is withheld, DS1 is allocated 487 kg to C₃ = 0 km²/s².
- Launch from Cape Canaveral Air Station.
- First Launch under NASA's Med-Lite contract and the first launch of the Delta 7326.

Major Project Milestones

a)	Project start	October 1995	$\sqrt{}$
b)	Complete DS1 Mission and Systems Interim Design	December 1995	$\sqrt{}$
	Concurrence (IDC) Review		,
c)	Complete Sage Review #1	May 1996	$\sqrt{}$
d)	Complete DS1 Mission and Systems Detailed Design	September 1996	$\sqrt{}$
	Concurrence (DDC) Review & Sage Review #2		
e)	Start S/C integration at SAI	May 1997	
f)	Deliver Partial Bus from SAI to JPL. Commence	August 1997	
	Assembly, Test and Launch Operations (ATLO)		
g)	Complete system tests & ship to KSC	April 1998	
h)	Launch commitment to NASA	July 1998	
i)	End of primary mission	June 2000	

Development Approach

- Utilize and improve upon lessons learned from Mars Pathfinder (MPF) and other projects with respect to low cost, rapid development
- Design to cost (project is cost capped) and schedule
 - Capabilities driven mission
- Learn implementation approach from Spectrum Astro (MSTI 1, 2, 3)
- Work closely with JPL re-engineering teams to develop, test and prototype processes
 - Flight system testbed and project design center
 - Video conferencing & electronic documentation
 - Schedule receivable/deliverable system
 - Flight part acquisition
 - "Art-to-Part"
 - Re-useable Electrical GSE
 - Multi-mission low thrust navigation software
 - Partnering with Industry

Development Approach

- Maximize value of DS1 advanced technologies to the extend feasiblewithin cost cap. Rest of spacecraft procured through Spectrum Astro.
 - Some exceptions: Telecom, Flight harness
 - Use low risk, off-the-shelf hardware
- Maintain healthy cost, schedule, reserves and performance margins
 - Track monthly take action before it become a problem
- Learn to operate in declining budget environment
 - Requires multiple funding sources
 - Requires projects/government agencies to co-operate more than in the past

ned

IPDT/ Flight Team Lessons Learned

- DS1 technology payload is first class
- Technology team members/leadership outstanding
- Teaming between technology payload team and flight team has been excellent
- Selection process
 - Chaotic
 - Peer review
- Contracting
 - Ensure money flows
 - Teaming
- Lead engineer's boss

DS1 Mission Highlights

- First deep-space technology validation mission
- First use of electric propulsion to go somewhere
- First use of machine intelligence (AI) to control and operate a spacecraft
- First use of autonomous onboard deep-space navigation
- Smallest flyby distance of any solar system body (5 km at asteroid) and closest approach to a comet nucleus (500 km)
- First spacecraft with UV or IR imaging spectrometer to a comet
- First launch in NASA Med-Lite series

